On some of the design aspects of wind energy conversion systems

نویسندگان

  • R. C. Bansal
  • T. S. Bhatti
  • D. P. Kothari
چکیده

In the overall process of utilizing wind power, two essential components of technical data, i.e. one related to the engineering or performance characteristics of commercially available wind turbine generators, and the other related to the availability of wind resources, are needed. The performance of wind energy conversion systems (WECs) depends upon subsystems like wind turbine (aerodynamic), gears (mechanical), and generator (electrical). The availability of wind resources is governed by the climatic conditions of the region, for which the wind survey is extremely important to exploit wind energy. In this paper, design aspects, such as factors affecting wind power, siting requirements for WECs, problems related with grid connections, classification of wind electric generation schemes, criteria for selection of equipment for WECs, choice of generators, three basic design philosophies, main considerations in wind turbine design, choice between two and three blade rotors, weight and size considerations and environmental aspects related with WECs have been presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Control of a Variable-Speed Wind Energy Conversion System: A New Approach

The operation of wind energy conversion systems mainly deals with variable and unpredictable wind regimes resulting in variable power efficiency. In addition, nowadays with the presence of high penetration level of wind farms integrated to power systems, stability and power quality problems might be addressed, when a disturbance event occurs. These challenges are worsened with significant degre...

متن کامل

Modeling, Optimization and exergoeconomic analysis a multiple energy production system based on solar Energy, Wind Energy and Ocean Thermal Energy Conversion (OTEC) in the onshore region

In the present study, investigated an energy production system using three types of renewable energy: solar, wind and ocean thermal energy with climatic conditions and close to areas with high potential for the OTEC system, Has a good position in terms of wind speed and solar radiation, used them as energy sources. The proposed system is designed and evaluated based on the total daily electrici...

متن کامل

Development and Analysis of a Novel Multi-Mode MPPT Technique with Fast and Efficient Performance for PMSG-Based Wind Energy Conversion Systems

Wind energy is one of the most promising renewable energy resources. Due to instantaneous variations of the wind speed, an appropriate Maximum Power Point Tracking (MPPT) method is necessary for maximizing the captured energy from the wind at different speeds. The most commonly used MPPT algorithms are Tip Speed Ratio (TSR), Power Signal Feedback (PSF), Optimal Torque Control (OTC) and Hill Cli...

متن کامل

A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System

In recent years, there has been a fast growth in wind energy conversion system (WECS). There are two general types of wind turbines in WECS: fixed speed wind turbines and varying speed wind turbines.Permanent magnet synchronous generator (PMSG) is one of the most attractive generators for the varying speed turbine WECS.In this paper, a fuzzy controller is proposed to control the current source ...

متن کامل

Reinforcement Learning Based PID Control of Wind Energy Conversion Systems

In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...

متن کامل

Optimal Sizing of a Reliable Hydrogen-based Stand-alone Wind-Fuel Cell System

A hybrid wind/ fuel cell generation system is designed to supply power demand. The aim of this design is to minimize the total cost of the hybrid system over an expected 20 years of operation. The optimization problem is solved aimed at providing a reliable supply for the consumer’s demand. The system consists of fuel cells, some wind units, some electrolyzers, a reformer, an anaerobic reactor ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005